学术预告 首页  >  学术科研  >  学术预告  >  正文

学术预告-Connectivity, diameter, independence number and the distance spectral radius of graphs
作者:     日期:2017-06-29     来源:    

讲座主题:Connectivity, diameter, independence number and the distance spectral radius of graphs

专家姓名:李书超

工作单位:华中师范大学

讲座时间:2017年6月30日10:00-11:00

讲座地点:数学学院340

主办单位:hy590海洋之神平台数学与信息科学学院

内容摘要:

The distance spectral radius of a graph is the largest eigenvalue of its distance matrix. Zhang [Linear Algebra Appl. 437 (2012) 1930-1941] determined the n-vertex graphs of given diameter with the minimum distance spectral radius. In this paper, on the one hand, we generalize this result by determining the graphs of order n with given connectivity and diameter having the minimum distance spectral radius; On the other hand, we determine the minimum distance spectral radius of graphs among the n-vertex graphs with given connectivity and independence number, and characterize the corresponding extremal graph. As consequences, we determine the minimum distance spectral radius of graphs among the n-vertex graphs with given connectivity (resp. independence number). All the corresponding extremal graphs are identified, respectively.

主讲人介绍:

华中师范大学教授、博士生导师。主要从事是图论与组合数学的研究工作。在European Journal of Combinatorics, Journal of Combinatorial Designs,Journal of Combinatorial Optimization等国际SCI期刊发表学术论文90余篇,其中有两篇论文入选“2008年中国100篇最具影响国际学术论文”。2012主持完成的项目“图的几类重要不变量研究”获湖北省自然科学奖;2013年入选“教育部新世纪优秀人才支持计划”。目前主持国家自然科学基金面上项目1项,曾主持完成国家自然科学基金面上项目和国际合作项目各1项。